Latinized Names of Muslim Scholars

By: 

This article includes the Latinized names of Muslim scholars.

+ Click to read the full article
- Click to close
Latinized Name Arabic Name Biographical Sketch
Abalphatus, Asphahanensis Abū ‘l-Fath Mahmūd Ibn Muhammad al-Isfahānī A 10th century mathematician from Iran. He flourished around 982 CE in Isfahan. Editor of, and commentator on, some books of Apollonius' Conics. His work on the Conics was known in Europe.
Abenguefith Ibn Wāfid, Abū 'l-Mutarrif ‘Abd al-Rahmān al-Lakhmī A physician from Toledo, he lived from 1008 to 1074. He is the author of a treatise on ophalmology and of another on simple medical substances. The latter was famous in Europe under the title Liber Abenguefith Philosophi de virtutibus medicinarum et ciborum, after its Latin translation by Gherard of Cremone.
Abenezra Abraham ben Meir ibn Ezra Ibn Azra Jewish Andalusian astronomer, born in Tudela, Emirate of Saragossa in 1092/93. He was a poet, grammarian, traveller, philosopher, and astronomer. He left his native land of Andalus before 1140 and travelled throughout Europe. His travels took him to North Africa, Egypt, Palestine, Italy, France, and England, until his death on January 1167.

Taking Aben-Ezra's work as a whole, it consists rather in popularizing Andalusian knowledge in different fields on Latin and Saxon soil. Several of his scientific works were translated into Latin: one by Henry Bate in 1281 and 1292, another by Peter de Abano in 1293 and a third by Arnoul de Quinquempoix sometime before 1326. A translation was made independently from the Hebrew original into Catalan, by Martin of Osca (or Huesca), Aragon. From this Catalan version, The Book of Nativities was translated into Latin by Louis de Angulo in 1448.

Abubacer (and Abentophal, Abentofail) Abū Bakr Muhammad Ibn Tufayl al-Qaysī Andalusian philosopher, physician and court official (ca 1100-1185 CE). Born in Andalus, he died in Morocco where he was appointed a vizier and physician for Abu Ya'qub Yusuf, the Almohad Caliph, to whom he recommended Ibn Rushd as his own successor when he retired in 1182. Ibn Tufayl is famous for Hay Ibn Yaqzan (Alive son of Awake), a philosophical romance and allegorical tale. The story of Hayy Ibn Yaqzan is similar to the later story of Mowgli in Rudyard Kipling's The Jungle Book in that a baby is abandoned in a deserted tropical island where he is taken care of and fed by a mother wolf.

A Latin translation of the work, entitled Philosophus autodidactus, first appeared in 1671, prepared by Edward Pococke. The first English translation was published in 1708. But Ibn Tufayl's intellectual legacy was known in Europe since the Middle Ages.

See the Arabic text of Hayy bin Yaqzan from Wikisource; English translation: The History of Hayy Ibn Yaqzan, translated from the Arabic by Simon Ockley (London: Chapman and Hall, 1929).

Abulfeda Abū 'l-Fidā, Ismā'il Ibn Kathīr ‘Imād al-Dīn A Syrian historian and scholar (1273-1331). Among his works: Al-Bidaya wa al-nihaya (The Beginning and the End), Taqwim al-buldan (A Sketch of the countries), Tarikh Abu-'l-Fida, his chief historical work, also called Mukhtassar tarikh al-bashar (The Concise History of Humanity or An Abridgment of the History at the Human Race), in the form of annals extending from the creation of the world to the 1300s. Abu 'l- Fida was also well learned in many fields such as botany and materia medica. He wrote a work in many volumes on medicine titled Kunash, and a book on the balance.

His books of history (Tarikh) and geography (Taqwim) were known in the West. The Taqwim Al-Buldan knew many translations into Latin, either partial or complete. One of them is: Abulfedae Tabula Syriae: cum excerpto geographico ex Ibn ol Wardii Geographia et historia naturali / Arabice nunc primum edidit, Latine vertit, notis explanavit Io. Bernhardus Koehler; accessere Io. Iacobi Reiskii ... (Lipsiae, 1766).

Albategnius (and Albategni or Albatenius) Al-Battānī, Abū ‘Abdullāh Muhammad Ibn Jābir Ibn Sinān al-Harrānī as-Sābī Astronomer and mathematician, born in Harran (now in Turkey) around 853 CE. He died in 929 at Qasr al-Jiss, near Samarra in Iraq. Among his achievements: the determination of the solar year as being 365 days, 5 hours, 46 minutes and 24 seconds; the production of a number of trigonometrical relationships; he also used al-Marwazi's idea of tangents to develop equations for calculating tangents and cotangents, compiling tables of them. His most important work is his Zīj, or set of astronomical tables, known as al-Zīj al-Sābī with 57 chapters, which by way of Latin translation as De Motu Stellarum by Plato of Tivoli in 1116 (printed 1537 by Melanchthon, annotated by Regiomontanus), had great influence on European astronomy. Copernicus mentioned his indebtedness to Al-Battani and quoted him in the De Revolutionibus (1543).
Alboacen Abū Al-Hasan Alī Ibn Muhammad Ibn Habīb al-Māwardī A scholar in political science, sociology, jurisprudence, and ethics. He was born in 972 CE in Basra. A jurist of the Shafi'i school, he also made contributions to Qur'anic interpretations, philology and literature. He served as a judge at several Iraqi districts, including Baghdad, and as an ambassador of the Abbasid caliph to several Muslim states. Al-Mawardi's works on Islamic governance are recognized as classics in the field. His contribution in political science and sociology comprises a number of monumental books, the most famous of which is Al-Ahkam al-Sultaniyya w'al-Wilayat al-Diniyya (The Ordinances of Government), Qanun al-Wazarah (Laws regarding the Ministers), Kitab Nasihat al-Mulk (The Book of Sincere Advice to Rulers), Kitab Aadab al-Dunya w'al-Din (The Ethics of Religion and of this World).
Albohali Abū ‘Alī al-Khayyât, Yahyā Ibn Ghālib Early astronomer-astrologer (c.770-c.835), author of works translated from Arabic into Latin by Plato Tiburnitus into Latin, such as Albohali arabis astrologi antiqvissimi, ac clarissimi de Ivdiciis natiuitatu, Liber Unus (Nurnberg, 1549). This book was edited recently: The Judgments of Nativities by Yahya Ibn Ghalib Khayyat (Tempe, Arizona: the American Federation of Astrologers, 1988).
Albucasis Abū 'l-Qāsim Khalaf Ibn al-‘Abbās al-Zahrāwī An Andalusian physician and surgeon (936 - 1013). He is considered as the father of modern surgery, and as Islam's greatest surgeon, whose comprehensive medical texts, combining Islamic medicine and ancient influences, shaped both Islamic and European surgical procedures up until the Renaissance. His greatest contribution to history is the Kitab al-Tasrif, a thirty-volume encyclopedia of medical practices. It included sections on surgery, medicine, orthopaedics, ophthalmology, pharmacology, nutrition etc.

Al-Tasrif was translated into Latin by Gerard of Cremona in the 12th century. For about five centuries, it was the primary source for European medical knowledge, and served as a reference for doctors and surgeons. Its influence continued in European medicine continued for at least five centuries, extending into the Renaissance.

See the article Arab Surgeon Albucasis (al-Zahrāwī), and the extracts from the transcription of one of the 30 volumes of the encyclopaedia al-Tasrif: MS G21, National Library of Morocco in Rabat.

Albumasar Abū Ma'shar al-Falakī, Ja'far Ibn Muhammad al-Balkhī Afghan mathematician, astronomer, astrologer and philosopher (10 August 787 in Balkh, Afghanistan - 9 March 886 in Wasit, Iraq). Many of his works were translated into Latin and were well known amongst many European astrologers, astronomers, and mathematicians during the European Middle Ages.

Abu Ma'shar developed a planetary model which some have interpreted as a heliocentric model. This is due to his orbital revolutions of the planets being given as heliocentric revolutions rather than geocentric revolutions. His work on planetary theory has not survived, but his astronomical data was later recorded by al-Hashimi and al-Biruni [see Bartel Leendert van der Waerden (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences 500 (1), 525–545; especially pp. 534-537].

Some modern historians argued that the writings of Albumasar were very likely the single most important original source of Aristotle's theories of nature for European scholars, starting a little before the middle of the 12th century.

Albumasar's astronomical and astrological treatise Kitab al-mudkhal al-kabir ila 'ilm ahkam an-nujjum was translated into Latin as Introductorium in Astronmiam by John of Seville in 1133, and again by Hermann of Carinthia in 1140.

Alchabitius (and Alcabitius, Alcibitius) Al-Qabīsī, Abū al-Saqr ‘Abd al-‘Azīz Ibn Uthmān A 10th century astrologer (d. 967), primarily known for his treatise on judicial astrology, Introduction to the Art of Judgments of the Stars, dedicated to the Sultan Sayf al-Dawlah (reigned c. 916-967) of the Hamdanid dynasty, a work which was highly prized in medieval and Renaissance Europe.

A 13th century Latin translation by John of Seville was printed in 1473 under the title Alchabitii Abdilazi liber introductorius ad magisterium judiciorum astrorum (the work is also known as the Liber isagogicus de planetarum coniunctionibus). Further editions, such as those of 1485 and 1491, often included a commentary by Johannes Dank ("John Danko") of Saxony, a 14th century author.

Erhard Ratdolt's edition published in Venice in 1503 (Alchabitius cum commento) also included Dank's commentary.

Alfarabius, Alpharabius, Pharabius, Abunaser Al-Fārābī, Abū Nasr Muhammad Ibn Tarkhān A great scientist and philosopher (ca. 870-950), whose works were translated into Latin very early and had a wide diffusion and influence. Al-Farabi made notable contributions in mathematics, philosophy, epistemology and music.

See Al-Fârâbî as a Source of the History of Philosophy and of Its Definition; "Al-Farabi, Abu Nasr (c.870-950)"; and Robert Hammond, The Philosophy of Alfarabi and Its Influence on Medieval Thought (1947).

 
Alfraganus Al-Farghānī, Abū 'l-'Abbās Ahmad Ibn Muhammad Ibn Kathīr One of the famous astronomers in the 9th century. Born in 805at Ferghana (present Uzbekistan), he worked in Baghdad, where he was connected to the group of scholars led by the brothers Banu Musa. Later he moved to Cairo, where he composed a very important treatise on the astrolabe around 856. There he also supervised the construction of the large Nilometer on the island of al-Rawda (in Old Cairo) in 861. Al-Farghani died around 880.

He was involved in the measurement of the diameter of the Earth together with a team of scientists under the patronage of Caliph al-Ma'mūn in Baghdad. His textbook Elements of astronomy on the celestial motions, written about 833, was translated into Latin in the 12th century and remained very popular in Europe until the time of Regiomontanus. In the 17th century the Dutch orientalist Jacob Golius published the Arabic text on the basis of a manuscript he had acquired in the Near East, with a new Latin translation and extensive notes. The Alfraganus crater on the Moon was named after him.

See "Alfraganus and the Elements of Astronomy".

Algazel Al-Ghazālī, Abū Hāmed Muhammad Ibn Muhammad Born and died in Tus, in Khurasan (eastern province of Iran) between 1058 and 1111 CE, he was a Muslim theologian, jurist, philosopher, and mystic. Al-Imam al-Ghazali remains one of the most celebrated scholars in the history of Islamic thought. His thought had an important influence on both Muslim philosophers and Christian medieval philosophers. Margaret Smith writes in her book Al-Ghazali: The Mystic (London 1944): "There can be no doubt that Al-Ghazali's works would be among the first to attract the attention of these European scholars". She adds: "The greatest of these Christian writers who was influenced by Al-Ghazali was St. Thomas Aquinas (1225–1274), who made a study of the Arabic writers and admitted his indebtedness to them. He studied at the University of Naples where the influence of Arab literature and culture was predominant at the time."

Visit Al-Ghazali Web Site and see the full text of Incoherence of the Philosophers, and an extensive list of books by al-Ghazali from Fons Vitae books: Fons Vitae al-Ghazali Spiritual Masters series. See also "Al-Ghazali's Views on Children's Education".

Alghorismus and Algoritmi Al-Khwārizmī, Abū Ja'far Muhammad Ibn Mūsā A Muslim mathematician, astronomer, and geographer, who wrote on Hindu-Arabic numerals and was among the first to use zero as a place holder in positional base notation. The word algorithm derives from his name. His algebra treatise Hisab al-jabr w'al-muqabala gives us the word algebra and can be considered as the first book to be written on algebra. He was born around 780 in Khwārizm (now Khiva, Uzbekistan) and died around 850. He worked most of his life as a scholar in the House of Wisdom in Baghdad.

His Kitab fi 'l-jabr wa-'l-muqabala (Book on algebra and in opposition) was the first book on the systematic solution of linear and quadratic equations. Consequently he is considered to be the father of algebra. Latin translations of his Arithmetic, on the Indian numerals, introduced the decimal positional number system to the Western world in the 12th century.

See for a biography and review of al-Khwarizmi's mathematical contribution: Full MacTutor biography. See also "Al-Khwarizmi, Abdu'l-Hamid Ibn Turk and the Place of Central Asia in the History of Science".

Algizar Ibn al-Jazzār, Abū Ja'far Ahmed Ibn Ibrāhīm Ibn Abī Khālid al-Qayrawānī Tunisian physician, born around 878 à Kairouan, where he died in ca. 980. About forty medical works are attributed to him, many of them were translated into Latin: Kitab al-adwiya al-mufrada (Treatise on Simple Drugs) (Liber de Gradibus Simpleium), the Latin translation of which was performed by Constantine the African. His Tibb al-fuqara ' wa al-masakin (Medicine for the Poor) represents a literary topic which became especially popular during the Middle Ages, when works of this type were written by different authors, as, for instance, al-Razi and Peter of Spain.

Ibn al-Jazzar's most important and most influential work is his Zad al- musafir wa-qut al-hadir (Provisions for the Traveller and the Nourishment of the Settled), translated by Constantin the African as Viaticum peregrinorum in 1124. This work, consisting of seven books, is not, as the title suggests, a guide for the traveller, but a systematic medical handbook, discussing the different diseases and their treatment a "capite ad calcem" (from head to toe) in a concise form.

See Ibn Al Jazzar.

Alhazen, Alhacen Al-Hassan Ibn al-Haytham, Abū ‘Alī Iraqi polymath scientist, who lived in Egypt (965 – 1039-40), called al-Basri, after his birthplace in the city of Basra, he died in Cairo, where he spent a splendid scientific career. He made significant contributions to the principles of optics, as well as to anatomy, astronomy, engineering, mathematics, medicine, ophthalmology, philosophy, physics, psychology, visual perception, and to science in general with his reflexions on the scientific method.

Ibn al-Haytham's most important work is Kitab al-manazir (Book of Optics) which contains the correct model of vision: the passive reception by the eyes of light rays reflected from objects, not an active emanation of light rays from the eyes. It combines experiment with mathematical reasoning. The work contains a complete formulation of the laws of reflection and a detailed investigation of refraction, including experiments involving angles of incidence and deviation. Refraction is correctly explained by light's moving slower in denser mediums. The work also contains "Alhazen's problem"—to determine the point of reflection from a plane or curved surface, given the centre of the eye and the observed point—which is stated and solved by means of conic sections.

A Latin translation of Ibn al-Haytham's greatest work Optics was made by an unknown scholar, probably early in the 13th century. The work had a major influence not only on 13th-century thinkers such as Roger Bacon but also on later scientists such as Kepler (1571–1630).

See Roshdi Rashed, "A Polymath in the 10th Century", Science Magazine, 2 August 2002, p. 773; and A. I. Sabra, "Ibn al-Haytham: Brief life of an Arab mathematician", Harvard Magazine, September-October 2003; Richard Lorch, "Ibn al-Haytham", Encyclopædia Britannica Online, 2007. See also "Ibn Al-Haitham the Muslim Physicist".

Alkindus Al-Kindī, Ya'qūb Ibn Ishāq A Muslim Arab polymath who flourished in Baghdad (c. 801–873 CE). He was a philosopher, scientist, astronomer, chemist, mathematician, musician, physician, and physicist. Al-Kindi was the first of the Muslim Peripatetic philosophers, and among his numerous other accomplishments he is well known for his efforts to introduce Greek philosophy to the Arab world, and as a pioneer in cryptology and physics.

See for detailed bio-bibliographies FSTC (2007), Al-Kindi; Al-Kindi, Cryptography, Code Breaking and Ciphers; Peter Adamson, "Al-Kindi" in The Stanford Encyclopedia of Philosophy (Winter 2006, online edition); M. al-Allaf, "Al-Kindi's Mathematical Metaphysics"; and Al-Kindi's website at Islamic Philosophy Online.

Ametus filius Iosephi Ahmed Ibn Yūsuf Ibn Ibrāhim al-Misrī Ibn ad-Dāya Ahmed Ibn Yusuf was born in Baghdad and moved to Damascus in 839, then to Cairo, where he died in 912 CE. He was a mathematician, like his father Yusuf Ibn Ibrahim.

Among his works that brought him fame and influence is his Risala fi 'l-nisba wa 'l-tanasub (Treatise on ratio and proportionality). This was translated into Latin by Gherard of Cremona. It influenced early European mathematicians such as Fibonacci. Further, in On similar arcs, he commented on Ptolemy's Centiloquium. He also wrote a book on the astrolabe, a predecessor of the octant and the sextant. He invented methods to solve tax problems in Liber Abaci. He was also quoted by mathematicians such as Thomas Bradwardine, Jordanus Nemorarius and Luca Pacioli.

His book On similar arcs influenced European mathematicians, as Ahmed Ibn Yusuf proves that similar arcs of circles can be equal and not equal. The proof, like that on ratio and proportion, is based on Euclid. This time it is Propositions 20 and 21 of Book III of Euclid's Elements which are the main tools used by Ahmed. The complete Arabic text of this treatise was edited by D. Schrader.

See J.J. O'Connor & E.F. Robertson, "Ahmed Ibn Yusuf al-Misri"; D. Schrader, The Epistola de proportione et proportionalitate of Ametus Filius Iosephi, PhD Dissertation, Madison, University of Wisconsin, 1961.

Anaritius Al-Nayrīzī, Abū 'l-'Abbās al-Fadhl Ibn Hātim A mathematician from Nayriz, a town near Shiraz. He flourished between ca. 875 and ca. 940. Little is known of his life but we do know that he dedicated some of his works to Caliph al-Mu'tadid (reigned 892-902) so he almost certainly moved to Baghdad and worked there for the caliph. He wrote commentaries on work by Ptolemy and Euclid, compiled astronomical tables, wrote a book for al-Mu'tadid on atmospheric phenomena. Al- Nayrizi's commentaries on Ptolemy and Euclid were translated into Latin by Gerard of Cremona. He used the so-called umbra (versa), the equivalent to the tangent, as a genuine trigonometric line. He wrote a treatise on the spherical astrolabe, which is very elaborate and seems to be the best Arabic work on the subject.

Al-Nayrizi wrote a book on how to calculate the direction of the sacred holy Ka'bah in Mecca (it was important for Muslims to be able to do this since they had to face that direction five times each day when performing the daily prayer). In this work he effectively uses the tan function, but he was not the first to use these trigonometrical ideas.

Alpetragius Al-Bitrūjī, Nūr al-Dīn Ibn Ishāq Andalusian astronomer of the 12th century (he died ca. 1204 CE). Born in present-day Morocco, he settled in Seville, and became a disciple of Ibn Tufayl and was a contemporary of Ibn Rushd.

He wrote a Kitab al-hay'a that was translated into Hebrew, and then into Latin (printed in Vienna in 1531). In this book, he advanced a theory on planetary motion in which he wished to avoid both epicycles and eccentrics, and to account for the phenomena peculiar to the wandering stars, by compounding rotations of homocentric spheres. This was a modification of the system of planetary motion proposed by his predecessors, Ibn Bajjah (Avempace) and Ibn Tufayl. But his efforts were unsuccessful in replacing Ptolemy's planetary model, due to the numerical predictions of the planetary positions in his configuration being less accurate than that of the Ptolemaic model, mainly because he followed Aristotle's notion of perfect circular motion.

See Osman Bakar, "The Golden Age of Andalusian Science".

Arzachel Al-Zarqālī, Abū Ishāq Ibrāhīm Ibn Yahyā al-Naqqāsh A leading scholar and the foremost astronomer of his time (1028–1087). He flourished in Toledo, where he constructed instruments and conducted theoretical and observational researches in astronomy. Combining theoretical knowledge with technical skill, he excelled at the construction of precision instruments for astronomical use. He constructed a flat astrolabe that was 'universal,' for it could be used at any latitude, and he built a water clock capable of determining the hours of the day and night and indicating the days of the lunar months.

Al-Zarqālī also wrote a treatise on the construction of an instrument (an equatorium) for computing the position of the planets using diagrams of the Ptolemaic model. This work was translated into Spanish in the 13th century by order of King Alfonso X in a section of the Libros del Saber de Astronomia.

His work was translated into Latin by Gerard of Cremona in the 12th c